• Kimble, HJ The quantum internet. Nature 4531023–1030 (2008).

    Article ADS CAS PubMed Google Scholar

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362eam9288 (2018).

    Article ADS MathSciNet PubMed Google Scholar

  • Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 8333–80 (2011).

    Article ADS Google Scholar

  • Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74145–195 (2002).

    Article ADS Google Scholar

  • Jiang, L., Taylor, J., Sørensen, A. & Lukin, M. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76062323 (2007).

    Article ADS Google Scholar

  • Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109070503 (2012).

    Article ADS PubMed Google Scholar

  • Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10582–587 (2014).

    Article Google Scholar

  • Briegel, H.-J., Dür, W., Cirac, J.I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 815932–5935 (1998).

    Article ADS CAS Google Scholar

  • Chou, C.W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438828–832 (2005).

    Article ADS CAS PubMed Google Scholar

  • Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 3161316–1320 (2007).

    Article ADS CAS PubMed Google Scholar

  • Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 4541098–1101 (2008).

    Article ADS CAS PubMed Google Scholar

  • Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 33772–75 (2012).

    Article ADS CAS PubMed Google Scholar

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 49786–90 (2013).

    Article ADS CAS PubMed Google Scholar

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers. Nature 526682–686 (2015).

    Article ADS CAS PubMed Google Scholar

  • Humphreys, P.C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558268–273 (2018).

    Article ADS CAS PubMed Google Scholar

  • Moehring, D.L. et al. Entanglement of single-atom quantum bits at a distance. Nature 44968–71 (2007).

    Article ADS CAS PubMed Google Scholar

  • Lago-Rivera, D., Grandi, S., Rakonjac, J.V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 59437–40 (2021).

    Article ADS CAS PubMed Google Scholar

  • Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 59441–45 (2021).

    Article ADS CAS PubMed Google Scholar

  • Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12218–223 (2016).

    Article CAS Google Scholar

  • Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119010503 (2017).

    Article ADS CAS PubMed Google Scholar

  • Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photons. 13210–213 (2019).

    Article ADS CAS Google Scholar

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372259–264 (2021).

    Article ADS CAS PubMed Google Scholar

  • Hermans, SLN et al. Qubit teleportation between non-neighboring nodes in a quantum network. Nature 605663–668 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Kumar, P. Quantum frequency conversion. Opt. Lett. 151476–1478 (1990).

    Article ADS CAS PubMed Google Scholar

  • Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 91998 (2018).

    Article ADS PubMed PubMed Central Google Scholar

  • Ikuta, R. et al. Polarization insensitive frequency conversion for an atom–photon entanglement distribution via a telecom network. Nat. Commun. 91997 (2018).

    Article ADS PubMed PubMed Central Google Scholar

  • Van Leent, T. et al. Long-distance distribution of atom–photon entanglement at telecom wavelength. Phys. Rev. Lett. 124010510 (2020).

    Article PubMed Google Scholar

  • Tchebotareva, A. et al. Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength. Phys. Rev. Lett. 123063601 (2019).

    Article ADS CAS PubMed Google Scholar

  • Krutyanskiy, V. et al. Light–matter entanglement over 50 km of optical fiber. npj Quantum Inf. 572 (2019).

    Article ADS Google Scholar

  • Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett. 129050503 (2022).

    Article ADS CAS PubMed Google Scholar

  • van Leent, T. et al. Entangling single atoms over 33 km telecom fiber. Nature 60769–73 (2022).

    Article ADS PubMed PubMed Central Google Scholar

  • Yu, Y. et al. Entanglement of two quantum memories via fibers over dozens of kilometers. Nature 578240–245 (2020).

    Article ADS CAS PubMed Google Scholar

  • Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8517–521 (2012).

    Article CAS Google Scholar

  • Duan, L.-M., Lukin, M.D., Cirac, J.I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414413–418 (2001).

    Article ADS CAS PubMed Google Scholar

  • Zhou, L., Lin, J., Jing, Y. & Yuan, Z. Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14928 (2023).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Yang, C.-W. et al. Deterministic measurement of a Rydberg superatom qubit via cavity-enhanced single-photon emission. Optica 9853–858 (2022).

    Article ADS CAS Google Scholar

  • Tan, SM, Walls, DF & Collett, MJ Nonlocality of a single photon. Phys. Rev. Lett. 66252–255 (1991).

    Article ADS CAS PubMed Google Scholar

  • Li, L., Dudin, YO & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498466–469 (2013).

    Article ADS CAS PubMed Google Scholar

  • Ma, X.-s et al. Experimental delayed-choice entanglement swapping. Nat. Phys. 8479–484 (2012).

    Article Google Scholar

  • Wengerowsky, S., Joshi, SK, Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564225–228 (2018).

    Article ADS CAS PubMed Google Scholar

  • Choi, KS, Goban, A., Papp, SB, Van Enk, SJ & Kimble, HJ Entanglement of spin waves among four quantum memories. Nature 468412–416 (2010).

    Article ADS CAS PubMed Google Scholar

  • Dür, W., Vidal, G. & Cirac, J.I. Three qubits can be entangled in two unequivalent ways. Phys. Rev. A 62062314 (2000).

    Article ADS MathSciNet Google Scholar

  • Barrett, SD & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71060310 (2005).

    Article ADS Google Scholar

  • van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96240501 (2006).

    Article PubMed Google Scholar

  • Collins, O.A., Jenkins, S.D., Kuzmich, A. & Kennedy, TAB Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98060502 (2007).

    Article ADS CAS PubMed Google Scholar

  • Sun, P.-F. et al. Deterministic time-bin entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 128060502 (2022).

    Article ADS CAS PubMed Google Scholar

  • Xu, W. et al. Fast preparation and detection of a Rydberg qubit using atomic ensembles. Phys. Rev. Lett. 127050501 (2021).

    Article ADS CAS PubMed Google Scholar

  • Wang, X.-J. et al. Cavity-enhanced atom-photon entanglement with subsecond lifetime. Phys. Rev. Lett. 126090501 (2021).

    Article ADS CAS PubMed Google Scholar

  • Liu, J.-L. et al. Data for “Creation of memory–memory entanglement in a metropolitan quantum network”. Zenodo https://doi.org/10.5281/zenodo.8149009 (2023).