Kimble, HJ The quantum internet. Nature 4531023–1030 (2008).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362eam9288 (2018).
Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 8333–80 (2011).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74145–195 (2002).
Jiang, L., Taylor, J., Sørensen, A. & Lukin, M. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76062323 (2007).
Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109070503 (2012).
Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10582–587 (2014).
Briegel, H.-J., Dür, W., Cirac, J.I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 815932–5935 (1998).
Chou, C.W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438828–832 (2005).
Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 3161316–1320 (2007).
Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 4541098–1101 (2008).
Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 33772–75 (2012).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 49786–90 (2013).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers. Nature 526682–686 (2015).
Humphreys, P.C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558268–273 (2018).
Moehring, D.L. et al. Entanglement of single-atom quantum bits at a distance. Nature 44968–71 (2007).
Lago-Rivera, D., Grandi, S., Rakonjac, J.V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 59437–40 (2021).
Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 59441–45 (2021).
Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12218–223 (2016).
Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119010503 (2017).
Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photons. 13210–213 (2019).
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372259–264 (2021).
Hermans, SLN et al. Qubit teleportation between non-neighboring nodes in a quantum network. Nature 605663–668 (2022).
Kumar, P. Quantum frequency conversion. Opt. Lett. 151476–1478 (1990).
Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 91998 (2018).
Ikuta, R. et al. Polarization insensitive frequency conversion for an atom–photon entanglement distribution via a telecom network. Nat. Commun. 91997 (2018).
Van Leent, T. et al. Long-distance distribution of atom–photon entanglement at telecom wavelength. Phys. Rev. Lett. 124010510 (2020).
Tchebotareva, A. et al. Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength. Phys. Rev. Lett. 123063601 (2019).
Krutyanskiy, V. et al. Light–matter entanglement over 50 km of optical fiber. npj Quantum Inf. 572 (2019).
Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett. 129050503 (2022).
van Leent, T. et al. Entangling single atoms over 33 km telecom fiber. Nature 60769–73 (2022).
Yu, Y. et al. Entanglement of two quantum memories via fibers over dozens of kilometers. Nature 578240–245 (2020).
Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8517–521 (2012).
Duan, L.-M., Lukin, M.D., Cirac, J.I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414413–418 (2001).
Zhou, L., Lin, J., Jing, Y. & Yuan, Z. Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14928 (2023).
Yang, C.-W. et al. Deterministic measurement of a Rydberg superatom qubit via cavity-enhanced single-photon emission. Optica 9853–858 (2022).
Tan, SM, Walls, DF & Collett, MJ Nonlocality of a single photon. Phys. Rev. Lett. 66252–255 (1991).
Li, L., Dudin, YO & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498466–469 (2013).
Ma, X.-s et al. Experimental delayed-choice entanglement swapping. Nat. Phys. 8479–484 (2012).
Wengerowsky, S., Joshi, SK, Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564225–228 (2018).
Choi, KS, Goban, A., Papp, SB, Van Enk, SJ & Kimble, HJ Entanglement of spin waves among four quantum memories. Nature 468412–416 (2010).
Dür, W., Vidal, G. & Cirac, J.I. Three qubits can be entangled in two unequivalent ways. Phys. Rev. A 62062314 (2000).
Barrett, SD & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71060310 (2005).
van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96240501 (2006).
Collins, O.A., Jenkins, S.D., Kuzmich, A. & Kennedy, TAB Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98060502 (2007).
Sun, P.-F. et al. Deterministic time-bin entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 128060502 (2022).
Xu, W. et al. Fast preparation and detection of a Rydberg qubit using atomic ensembles. Phys. Rev. Lett. 127050501 (2021).
Wang, X.-J. et al. Cavity-enhanced atom-photon entanglement with subsecond lifetime. Phys. Rev. Lett. 126090501 (2021).
Liu, J.-L. et al. Data for “Creation of memory–memory entanglement in a metropolitan quantum network”. Zenodo https://doi.org/10.5281/zenodo.8149009 (2023).